3.7.84 \(\int \frac {x^{2/3}}{(a+b x)^2} \, dx\) [684]

3.7.84.1 Optimal result
3.7.84.2 Mathematica [A] (verified)
3.7.84.3 Rubi [A] (verified)
3.7.84.4 Maple [A] (verified)
3.7.84.5 Fricas [B] (verification not implemented)
3.7.84.6 Sympy [B] (verification not implemented)
3.7.84.7 Maxima [A] (verification not implemented)
3.7.84.8 Giac [A] (verification not implemented)
3.7.84.9 Mupad [B] (verification not implemented)

3.7.84.1 Optimal result

Integrand size = 13, antiderivative size = 115 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=-\frac {x^{2/3}}{b (a+b x)}-\frac {2 \arctan \left (\frac {\sqrt [3]{a}-2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt {3} \sqrt [3]{a}}\right )}{\sqrt {3} \sqrt [3]{a} b^{5/3}}-\frac {\log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{\sqrt [3]{a} b^{5/3}}+\frac {\log (a+b x)}{3 \sqrt [3]{a} b^{5/3}} \]

output
-x^(2/3)/b/(b*x+a)-ln(a^(1/3)+b^(1/3)*x^(1/3))/a^(1/3)/b^(5/3)+1/3*ln(b*x+ 
a)/a^(1/3)/b^(5/3)-2/3*arctan(1/3*(a^(1/3)-2*b^(1/3)*x^(1/3))/a^(1/3)*3^(1 
/2))/a^(1/3)/b^(5/3)*3^(1/2)
 
3.7.84.2 Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 133, normalized size of antiderivative = 1.16 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=\frac {-\frac {3 b^{2/3} x^{2/3}}{a+b x}-\frac {2 \sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a}}-\frac {2 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{\sqrt [3]{a}}+\frac {\log \left (a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} \sqrt [3]{x}+b^{2/3} x^{2/3}\right )}{\sqrt [3]{a}}}{3 b^{5/3}} \]

input
Integrate[x^(2/3)/(a + b*x)^2,x]
 
output
((-3*b^(2/3)*x^(2/3))/(a + b*x) - (2*Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x^(1/3 
))/a^(1/3))/Sqrt[3]])/a^(1/3) - (2*Log[a^(1/3) + b^(1/3)*x^(1/3)])/a^(1/3) 
 + Log[a^(2/3) - a^(1/3)*b^(1/3)*x^(1/3) + b^(2/3)*x^(2/3)]/a^(1/3))/(3*b^ 
(5/3))
 
3.7.84.3 Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.05, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {51, 68, 16, 1082, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{2/3}}{(a+b x)^2} \, dx\)

\(\Big \downarrow \) 51

\(\displaystyle \frac {2 \int \frac {1}{\sqrt [3]{x} (a+b x)}dx}{3 b}-\frac {x^{2/3}}{b (a+b x)}\)

\(\Big \downarrow \) 68

\(\displaystyle \frac {2 \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \int \frac {1}{\frac {\sqrt [3]{a}}{\sqrt [3]{b}}+\sqrt [3]{x}}d\sqrt [3]{x}}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {x^{2/3}}{b (a+b x)}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {2 \left (\frac {3 \int \frac {1}{\frac {a^{2/3}}{b^{2/3}}-\frac {\sqrt [3]{x} \sqrt [3]{a}}{\sqrt [3]{b}}+x^{2/3}}d\sqrt [3]{x}}{2 b}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {x^{2/3}}{b (a+b x)}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {3 \int \frac {1}{-x^{2/3}-3}d\left (1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {x^{2/3}}{b (a+b x)}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (-\frac {\sqrt {3} \arctan \left (\frac {1-\frac {2 \sqrt [3]{b} \sqrt [3]{x}}{\sqrt [3]{a}}}{\sqrt {3}}\right )}{\sqrt [3]{a} b^{2/3}}-\frac {3 \log \left (\sqrt [3]{a}+\sqrt [3]{b} \sqrt [3]{x}\right )}{2 \sqrt [3]{a} b^{2/3}}+\frac {\log (a+b x)}{2 \sqrt [3]{a} b^{2/3}}\right )}{3 b}-\frac {x^{2/3}}{b (a+b x)}\)

input
Int[x^(2/3)/(a + b*x)^2,x]
 
output
-(x^(2/3)/(b*(a + b*x))) + (2*(-((Sqrt[3]*ArcTan[(1 - (2*b^(1/3)*x^(1/3))/ 
a^(1/3))/Sqrt[3]])/(a^(1/3)*b^(2/3))) - (3*Log[a^(1/3) + b^(1/3)*x^(1/3)]) 
/(2*a^(1/3)*b^(2/3)) + Log[a + b*x]/(2*a^(1/3)*b^(2/3))))/(3*b)
 

3.7.84.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 51
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[ 
(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m + 1))), x] - Simp[d*(n/(b*(m + 1))) 
Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
 

rule 68
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[ 
{q = Rt[-(b*c - a*d)/b, 3]}, Simp[Log[RemoveContent[a + b*x, x]]/(2*b*q), x 
] + (Simp[3/(2*b)   Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1/3)], 
 x] - Simp[3/(2*b*q)   Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] / 
; FreeQ[{a, b, c, d}, x] && NegQ[(b*c - a*d)/b]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 
3.7.84.4 Maple [A] (verified)

Time = 0.27 (sec) , antiderivative size = 118, normalized size of antiderivative = 1.03

method result size
derivativedivides \(-\frac {x^{\frac {2}{3}}}{b \left (b x +a \right )}+\frac {-\frac {2 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}}{b}\) \(118\)
default \(-\frac {x^{\frac {2}{3}}}{b \left (b x +a \right )}+\frac {-\frac {2 \ln \left (x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {\ln \left (x^{\frac {2}{3}}-\left (\frac {a}{b}\right )^{\frac {1}{3}} x^{\frac {1}{3}}+\left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}+\frac {2 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (\frac {2 x^{\frac {1}{3}}}{\left (\frac {a}{b}\right )^{\frac {1}{3}}}-1\right )}{3}\right )}{3 b \left (\frac {a}{b}\right )^{\frac {1}{3}}}}{b}\) \(118\)

input
int(x^(2/3)/(b*x+a)^2,x,method=_RETURNVERBOSE)
 
output
-x^(2/3)/b/(b*x+a)+2/b*(-1/3/b/(a/b)^(1/3)*ln(x^(1/3)+(a/b)^(1/3))+1/6/b/( 
a/b)^(1/3)*ln(x^(2/3)-(a/b)^(1/3)*x^(1/3)+(a/b)^(2/3))+1/3*3^(1/2)/b/(a/b) 
^(1/3)*arctan(1/3*3^(1/2)*(2/(a/b)^(1/3)*x^(1/3)-1)))
 
3.7.84.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 175 vs. \(2 (84) = 168\).

Time = 0.24 (sec) , antiderivative size = 394, normalized size of antiderivative = 3.43 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=\left [-\frac {3 \, a b^{2} x^{\frac {2}{3}} - 3 \, \sqrt {\frac {1}{3}} {\left (a b^{2} x + a^{2} b\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \log \left (\frac {2 \, b^{2} x - a b + 3 \, \sqrt {\frac {1}{3}} {\left (a b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} a + 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} x^{\frac {2}{3}}\right )} \sqrt {\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} - 3 \, \left (-a b^{2}\right )^{\frac {2}{3}} x^{\frac {1}{3}}}{b x + a}\right ) - \left (-a b^{2}\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (b^{2} x^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (b x^{\frac {1}{3}} - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{3 \, {\left (a b^{4} x + a^{2} b^{3}\right )}}, -\frac {3 \, a b^{2} x^{\frac {2}{3}} - 6 \, \sqrt {\frac {1}{3}} {\left (a b^{2} x + a^{2} b\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}} \arctan \left (\frac {\sqrt {\frac {1}{3}} {\left (2 \, b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}}\right )} \sqrt {-\frac {\left (-a b^{2}\right )^{\frac {1}{3}}}{a}}}{b}\right ) - \left (-a b^{2}\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (b^{2} x^{\frac {2}{3}} + \left (-a b^{2}\right )^{\frac {1}{3}} b x^{\frac {1}{3}} + \left (-a b^{2}\right )^{\frac {2}{3}}\right ) + 2 \, \left (-a b^{2}\right )^{\frac {2}{3}} {\left (b x + a\right )} \log \left (b x^{\frac {1}{3}} - \left (-a b^{2}\right )^{\frac {1}{3}}\right )}{3 \, {\left (a b^{4} x + a^{2} b^{3}\right )}}\right ] \]

input
integrate(x^(2/3)/(b*x+a)^2,x, algorithm="fricas")
 
output
[-1/3*(3*a*b^2*x^(2/3) - 3*sqrt(1/3)*(a*b^2*x + a^2*b)*sqrt((-a*b^2)^(1/3) 
/a)*log((2*b^2*x - a*b + 3*sqrt(1/3)*(a*b*x^(1/3) + (-a*b^2)^(1/3)*a + 2*( 
-a*b^2)^(2/3)*x^(2/3))*sqrt((-a*b^2)^(1/3)/a) - 3*(-a*b^2)^(2/3)*x^(1/3))/ 
(b*x + a)) - (-a*b^2)^(2/3)*(b*x + a)*log(b^2*x^(2/3) + (-a*b^2)^(1/3)*b*x 
^(1/3) + (-a*b^2)^(2/3)) + 2*(-a*b^2)^(2/3)*(b*x + a)*log(b*x^(1/3) - (-a* 
b^2)^(1/3)))/(a*b^4*x + a^2*b^3), -1/3*(3*a*b^2*x^(2/3) - 6*sqrt(1/3)*(a*b 
^2*x + a^2*b)*sqrt(-(-a*b^2)^(1/3)/a)*arctan(sqrt(1/3)*(2*b*x^(1/3) + (-a* 
b^2)^(1/3))*sqrt(-(-a*b^2)^(1/3)/a)/b) - (-a*b^2)^(2/3)*(b*x + a)*log(b^2* 
x^(2/3) + (-a*b^2)^(1/3)*b*x^(1/3) + (-a*b^2)^(2/3)) + 2*(-a*b^2)^(2/3)*(b 
*x + a)*log(b*x^(1/3) - (-a*b^2)^(1/3)))/(a*b^4*x + a^2*b^3)]
 
3.7.84.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 527 vs. \(2 (107) = 214\).

Time = 135.94 (sec) , antiderivative size = 527, normalized size of antiderivative = 4.58 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=\begin {cases} \frac {\tilde {\infty }}{\sqrt [3]{x}} & \text {for}\: a = 0 \wedge b = 0 \\\frac {3 x^{\frac {5}{3}}}{5 a^{2}} & \text {for}\: b = 0 \\- \frac {3}{b^{2} \sqrt [3]{x}} & \text {for}\: a = 0 \\\frac {2 a \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} - \frac {a \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} + \frac {2 \sqrt {3} a \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} + \frac {2 a \log {\left (2 \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} - \frac {3 b x^{\frac {2}{3}} \sqrt [3]{- \frac {a}{b}}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} + \frac {2 b x \log {\left (\sqrt [3]{x} - \sqrt [3]{- \frac {a}{b}} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} - \frac {b x \log {\left (4 x^{\frac {2}{3}} + 4 \sqrt [3]{x} \sqrt [3]{- \frac {a}{b}} + 4 \left (- \frac {a}{b}\right )^{\frac {2}{3}} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} + \frac {2 \sqrt {3} b x \operatorname {atan}{\left (\frac {2 \sqrt {3} \sqrt [3]{x}}{3 \sqrt [3]{- \frac {a}{b}}} + \frac {\sqrt {3}}{3} \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} + \frac {2 b x \log {\left (2 \right )}}{3 a b^{2} \sqrt [3]{- \frac {a}{b}} + 3 b^{3} x \sqrt [3]{- \frac {a}{b}}} & \text {otherwise} \end {cases} \]

input
integrate(x**(2/3)/(b*x+a)**2,x)
 
output
Piecewise((zoo/x**(1/3), Eq(a, 0) & Eq(b, 0)), (3*x**(5/3)/(5*a**2), Eq(b, 
 0)), (-3/(b**2*x**(1/3)), Eq(a, 0)), (2*a*log(x**(1/3) - (-a/b)**(1/3))/( 
3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) - a*log(4*x**(2/3) + 4*x* 
*(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x 
*(-a/b)**(1/3)) + 2*sqrt(3)*a*atan(2*sqrt(3)*x**(1/3)/(3*(-a/b)**(1/3)) + 
sqrt(3)/3)/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) + 2*a*log(2)/ 
(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) - 3*b*x**(2/3)*(-a/b)**( 
1/3)/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) + 2*b*x*log(x**(1/3 
) - (-a/b)**(1/3))/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) - b*x 
*log(4*x**(2/3) + 4*x**(1/3)*(-a/b)**(1/3) + 4*(-a/b)**(2/3))/(3*a*b**2*(- 
a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3)) + 2*sqrt(3)*b*x*atan(2*sqrt(3)*x**(1 
/3)/(3*(-a/b)**(1/3)) + sqrt(3)/3)/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/ 
b)**(1/3)) + 2*b*x*log(2)/(3*a*b**2*(-a/b)**(1/3) + 3*b**3*x*(-a/b)**(1/3) 
), True))
 
3.7.84.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.04 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=-\frac {x^{\frac {2}{3}}}{b^{2} x + a b} + \frac {2 \, \sqrt {3} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} - \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} + \frac {\log \left (x^{\frac {2}{3}} - x^{\frac {1}{3}} \left (\frac {a}{b}\right )^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} - \frac {2 \, \log \left (x^{\frac {1}{3}} + \left (\frac {a}{b}\right )^{\frac {1}{3}}\right )}{3 \, b^{2} \left (\frac {a}{b}\right )^{\frac {1}{3}}} \]

input
integrate(x^(2/3)/(b*x+a)^2,x, algorithm="maxima")
 
output
-x^(2/3)/(b^2*x + a*b) + 2/3*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^(1/3) - (a/b) 
^(1/3))/(a/b)^(1/3))/(b^2*(a/b)^(1/3)) + 1/3*log(x^(2/3) - x^(1/3)*(a/b)^( 
1/3) + (a/b)^(2/3))/(b^2*(a/b)^(1/3)) - 2/3*log(x^(1/3) + (a/b)^(1/3))/(b^ 
2*(a/b)^(1/3))
 
3.7.84.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 136, normalized size of antiderivative = 1.18 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=-\frac {2 \, \left (-\frac {a}{b}\right )^{\frac {2}{3}} \log \left ({\left | x^{\frac {1}{3}} - \left (-\frac {a}{b}\right )^{\frac {1}{3}} \right |}\right )}{3 \, a b} - \frac {x^{\frac {2}{3}}}{{\left (b x + a\right )} b} - \frac {2 \, \sqrt {3} \left (-a b^{2}\right )^{\frac {2}{3}} \arctan \left (\frac {\sqrt {3} {\left (2 \, x^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {1}{3}}\right )}}{3 \, \left (-\frac {a}{b}\right )^{\frac {1}{3}}}\right )}{3 \, a b^{3}} + \frac {\left (-a b^{2}\right )^{\frac {2}{3}} \log \left (x^{\frac {2}{3}} + x^{\frac {1}{3}} \left (-\frac {a}{b}\right )^{\frac {1}{3}} + \left (-\frac {a}{b}\right )^{\frac {2}{3}}\right )}{3 \, a b^{3}} \]

input
integrate(x^(2/3)/(b*x+a)^2,x, algorithm="giac")
 
output
-2/3*(-a/b)^(2/3)*log(abs(x^(1/3) - (-a/b)^(1/3)))/(a*b) - x^(2/3)/((b*x + 
 a)*b) - 2/3*sqrt(3)*(-a*b^2)^(2/3)*arctan(1/3*sqrt(3)*(2*x^(1/3) + (-a/b) 
^(1/3))/(-a/b)^(1/3))/(a*b^3) + 1/3*(-a*b^2)^(2/3)*log(x^(2/3) + x^(1/3)*( 
-a/b)^(1/3) + (-a/b)^(2/3))/(a*b^3)
 
3.7.84.9 Mupad [B] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.23 \[ \int \frac {x^{2/3}}{(a+b x)^2} \, dx=\frac {2\,\ln \left (\frac {4\,x^{1/3}}{b}-\frac {4\,{\left (-a\right )}^{1/3}}{b^{4/3}}\right )}{3\,{\left (-a\right )}^{1/3}\,b^{5/3}}-\frac {x^{2/3}}{b\,\left (a+b\,x\right )}+\frac {\ln \left (\frac {4\,x^{1/3}}{b}-\frac {{\left (-a\right )}^{1/3}\,{\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{b^{4/3}}\right )\,\left (-1+\sqrt {3}\,1{}\mathrm {i}\right )}{3\,{\left (-a\right )}^{1/3}\,b^{5/3}}-\frac {\ln \left (\frac {4\,x^{1/3}}{b}-\frac {{\left (-a\right )}^{1/3}\,{\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}^2}{b^{4/3}}\right )\,\left (1+\sqrt {3}\,1{}\mathrm {i}\right )}{3\,{\left (-a\right )}^{1/3}\,b^{5/3}} \]

input
int(x^(2/3)/(a + b*x)^2,x)
 
output
(2*log((4*x^(1/3))/b - (4*(-a)^(1/3))/b^(4/3)))/(3*(-a)^(1/3)*b^(5/3)) - x 
^(2/3)/(b*(a + b*x)) + (log((4*x^(1/3))/b - ((-a)^(1/3)*(3^(1/2)*1i - 1)^2 
)/b^(4/3))*(3^(1/2)*1i - 1))/(3*(-a)^(1/3)*b^(5/3)) - (log((4*x^(1/3))/b - 
 ((-a)^(1/3)*(3^(1/2)*1i + 1)^2)/b^(4/3))*(3^(1/2)*1i + 1))/(3*(-a)^(1/3)* 
b^(5/3))